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A. Some Periodic Orbits in the Rectilinear
Restricted Three-Body Problem, R. A. Broucke

We have described in SPS 37-42, Vol. IV, pp. 31-33,
and SPS 37-43, Vol. 1V, pp. 20-22, some recent results
obtained in the elliptic restricted three-body problem.
The present article gives a few additional results relating
25 a special configuration of tl.e elliptic problem: the case
with equal masses and with extreme eccentricity e = 1.
The two primaries are supposed to be moving in a
Keplerian oscillatory motion on a straight line. This is the
limit of the elliptic motion when the eccentricity tends
to 1. We have first become aware of the interest of this
problem when we have seen that some of the periodic
orbits of Stromgren’s problem can be extended all the
way from the eccentricity e = 0 to the eccentricity e = +1.
This leads us to the conclusion that a special study of
the case e = +1 could be worthwhile. A similar conclu-
sion was drawn in an article by J. Schubart (Ref. 1), in
which he proposed to take the eccentricity e = +1 as a
starting point to a systematic study of the elliptic re-
stricted three-body problem.
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We have used in this study a non-rotating inertial
barycentric coordinate system. The equations of the
motion of the satellite under the gravitational force of
the primaries (1 — p) and p are

dx _ _ . o x_ %
dtz - (1 "') r:: . T; H)
dy _ . Y~ Yh _ Yy—uy
T = 14 7 =t

where the distances r,, r, from the satellite to the pri-
maries are given by

rr=(x—xn)>2+(y -y,
rP=(x—x)+({y— ).

The coordinates of the two primaries are given by the
well-known laws of elliptic motion. We have used them




in the form

x, = —p(—e + cos E),

y, = —p(l —e’)*sinE

x. = (1 — p)(—e + cos E),
y. = (1 —p) (1 — ) sinE,

where the eccentric anomaly E s related to the time by
Kepler’s equation

t+ X=E—csinE.

The phase constant X, in cur application, may be
taken equal to 0 or = according to the initial position of
the primaries, either at pericenter 0. apocenter. Actually,
all the orbits which will be described below belong to
X =0. There is no difficulty in the numerical solution of
Kepler's equation even when e = 1. in order to describe
the Keplerian motion of the twc rimaries as a function
of time t. It is important to notice that the above formu-
lation of the elliptic three-body problem is valid for all
eccentricities (0 = e = 1). We shall consider here only
the case e = 1. When we have the vnit eccentricity, there
is no sense anymore in using a rotating coordinate
system for this problem, since the primarizs are perma-
nently moving on a non-rotating straight line. For the
same reason the so-called Nechvile transformation can-
not be applied when ¢ = 1, and the simple form of the
equations of motion, which is completely similar to
the form for the circular case, cannot be used for high
eccentricity.

Because cf the straight-line motion of the two pri-
maries, the problem that we are treating here presents
some similarity with the well-known two-fixed center
problem. Our problem may be considered as a general-
ization of it, the two “fixed centers” now moving on a
straight line, according to Keplerian motion laws. Because
of this fact, we have here a problem which seems more
interesting *han the two-fixed center problem: the prob-
lem we are studying is gravitationally consistent while
the definition of the two-fixed center prol.lem is some-
what arbitrary (the primaries attract the satellite but do
not attract each other!). Among the similarities with the
two-fixed center problem one can also inention the
absence of the Coriolis force and the characteristic loops
in the orbits, which are due to this force.

The numerical integration of the above equations of
motion may encounter some difficulties due to the pres-

ence of the :ingularities r, =0 or r, = 0. In this particular
problem we have applied no regularization to the equa-
tions of motion.

Because of the simplicity of the equations of motion,
we have first decided to integrate some orbits with regu-
larly spaced initial conditions, in order to see if some
periodic oibits would eventually exist. We have soon
arrived at the rather surprising conclusion tha* a large
number of periodic orbits are existing, although they are
all isolated. We have then computed thirteen of these
periodic orbits with somewhat higher precision. We have
used the classical Runge-Kutta numerical integration
procedure, with a variable step, equal to 0.005 r,r,. Our
objective was not mainly in the high precision of the
numerical results, and for instance, by using full double
precision, our end results have probably only five- or
six-place accuracy. The periodic orbits have been obtained
by two-dimensional hnear differential cor-c.ticns, once
some good approximation had been obtained by the
previous computer runs.

We have given in Fig. 1 a diagram which shows the
initial conditions that have been explored. The initial
conditions being of the form

(xn; 0: 0) !./0)’
we have arbitrarily restricted ourselves to the limits

01<x <10, 02<i<22.

We have also restricted the velocity g, to be below some
parabolic or escape velocity defined by

. 2\*
=(2)

Imposing all the above restrictions, we obtain the
shaded area in Fig. 1. We have swept this area with
regular intervals of 0.05 for x, as well as for ¢,. The
thirteen points on this diagram correspond to the isolated
periodic orbits which have been found. The eleven orbits
three to thirteen form a single sequence: they all have
one loop around one primary and an increasing number
of loops around the other primary. We have given the
imtial conditions of the thirteen periodic orbits in Table 1.
All thirteen orbits have the period T = 2». In Fig. 2 we
have shown the actual orbits, referred to the barycentric
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Fig. 1. Diagram of initial conditions for periodic orbits

coordinate system. In Fig. 3 we have show. the six most
simple orbits referred to a coordinate systera centered at
one primary m, =1 — u (geocentric) and the other pri-
mary m, = u (selenocentric). In our particular problem
we have equal masses 1 — » = u = 1/2, and we use the
word “geocentric” for the coordinate system centered at
the primary which is shown on the left side in our figures.
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Fig.2. The 13 periodic orbits in the barycentric (inertial)
coordinate system
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Fig. 3. The first 6 periodic orbits in the geocontric and
the selenocentric coordinate systems

Table 1. Initial conditions for 13 periodic orbits

Orbit number Xo Yo
1 0.579152 1.680050
2 0.574506 0.346101
3 0.682309 0.981417
4 0.492110 1.192088
5 0.396211 1.347039
6 0.336523 1.473383
7 0.295148 1.581601
8 0.264484 1.677079
9 0.240690 1.763014
10 0.221596 1.841481
n 0.205876 1.913916
12 0.192667 1.981358
13 0.171617 2.104198

Similarly, “selenocentric” refers to the primary shown on
the right side. When we use the geocentric or seleno-
centric coordinates, we can see that some cusps are
present in the form of the orbits. These cusps are due to
accelerated translational motion of the frame of reference
rather than the motion of the satellite.

As a matter of conclusion let us say that we have here
thirteen isolated periodic orbits; however, these orbits
are not isolated as far as e and u are concerned. We have
prepared a computer program which should generate
new periodic orbits by varying e or x in a more or less
automatic way. For instance, we have been able to make
the following computer runs:

(1) In the neighborhood of orbit 1: 22 periodic orbits
with e = 1.0 and x = 0.5 to 0.479.

(2) In the neighborhood of orbit 2: 12 periodic orbits
with » =1/2 and e = 1.0 to 0.988; 26 periodic
orbits with ¢ = 1.0 and . = 0.5 to 0.458.

(3) In the neighborhood of orbit 3: 23 periodic orbits
with ¢ = 1.0 and x = 0.5 to 0.466.

B. Mariner Mars 1969 Celestial Mechanics
Experiment, J. D. Anderson

1. Summary

An error analysis has been performed for a set of
15 parameters determinable from the Mariner Mars 1969
tracking data. Among these 15 parameters are the Earth-
Moon mass ratio, the mass of Mars, the astronomical unit,
and the position of Mars at spacecraft-Mars encounter.
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It is these parameters which are of importance to the
celestial mechanics experiment (CME), at least for track-
ing data taken within the mission duration of launch to
encounter plus 3 months.

The motivation for the analysis is to determinc the
value of adding range data to the spacecraft tracking
and to investigate the effect of gas jetting from the infra-
red spectrometer (IRS) during planetary encounter. The
conclusion with respect to range data is that they sig-
nificantly improve the value of the experiment. With
range data it should be possible to determine the astro-
nomical unit and the position of Mars to better than
100 m. Without range data this number is increased to
about 1500 m, and realistically the error could be larger
because of an inability to calibrate the charged particle
contribution to the doppler signal. Both range and dop-
pler data permit this calibration, and provide as well an
improved opportunity for data validation.

If the uncertainty in the force imparted by the IRS gas
jetting is less than =1 dyne over a 90-min period around
encounter, then the effect on the CME is insignificant.
For an uncertainty greater than =1 dyne it is necessary
to include a model for the IRS jetting in the solution for
the astronomical constants, particularly for the mass of
Mars, With the inclusion of this model, we would at-
tempt to reduce the uncertainty in the force from the
IRS jetting to the level of +1 dyne. In order to accom-
plish such a reduction the a priori uncertainty should
certainly not be greater than 100 dynes, a number two
orders of magnitude lurger than the ultimate goal of
=+1 dyne. The a priori uncertainty is defined as that
obtained from preflight design and testing of the IRS
gas jetting system and from any useful telemetry ob-
tained during the jetting period.

2. Effect of Range Data on Celestial Mechanics
Experiment

In Subsection 5, errors on the orbital parameters and
astronomical constants are computed for doppler track-
ing data only and for doppler and range data. The results
indicate the significance of adding ranging data as far as
the celestial mechanics parameters are concerned. In a
sense this is an extension of an earlier article (SPS 37-43,
Vol. I11, pp. 18-24) where the addition of range data to
a single pass of tracking was considered. Of course it is
an oversimplification to judge the valuc of ranging data
solely on the basis of an error analysis of the sort given
here. Other considerations, such as having an independ-
ent type of data to compare with the doppler measure-
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ments, are equally important. Perhaps more important,
D. Trask and L. Efron (SPS 37-41, Vol. I1I, pp. 3-11)
point out that a combination of doppler and range obser-
vations can be used to calibrate the total (ionosphere and
space plasma) charged particle effect on both types of
data. This is especially important for Mariner 1969, which
does not include a dual frequency experimrent. A. Liu
and R. Motsch (SPS 37-44, Vol. III, pp. 28-33) have
explored further the possibility of a cha-ged particle
calibration.

Nevertheless, with the limitations of the present analy-
sis clearly in mind, it is possible to conclude that adding
range data to the doppler tracking can 1educe the un-
certainty on the astronomical unit from a region of
=150 to 1300 m with doppler data only to a region of
+25 to +65 m for range and doppler data. The position
of Mars is reduced from a region of =150 to 1700 m
to a region of 15 to +90 m. The effects on uncertainties
in the masses of the Moon and Mars are not as pro-
nounced as for the astronomical unit and the position
of Mars.

3. Effect of IRS Gas Jetting on Celestial Mechanics
Experiment

In this article it is assumed that the gas jetting from
the IRS experiment occurs in a period 1 hr before plane-
tary encounter to ! hr after encounter, a total period of
90 min. To see what this means in terms of a corruption
of doppler and range data, consider the time variation in
the geocentric radial velocity and range of the spacecraft
during a 12-hr period centered about the encounter time.
Fig. 4 shows a plot of the geocentric radial velocity and
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Fig. 4. Geocentric radial velocity vs time during
planetary encounter
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Fig. 5. Difference in geocentric range of date and
geocentric range at planetary encounter vs time

Fig. 5 shows the difference between the geocentric
range of date and the geocentric range at encounter.
Now, as an extreme case, suppose that the tracking data
during the 90 min of gas jetting are completely neglected
in the determination of the constants. It is clear from
Fig. 4 that a significant portion of the doppler curve is
lost and that some sort of degradation will occur in the
accuracy of constants which depend on the close ap-
proach to the planet for their determination. For example,
the accuracy of the mass of Mars could easily be de-
graded. On the other hand, the time variation of the
geocentric range during the encounter period does not
exhibit any peculiarities during the 90 min of jetting, and
the contribution of the range .data to the determination
of constants should not be significantly affected by the
loss of data.

It is important to realize that the gas jetting affects the
determination of the constants in two ways. The first and
most straightforward is the introduction of a systematic
source of error during the 90-min jetting period. This

6

can be handled, as in Subsection 4, by assuming that the
tracking data are corrupted by the jetting and by weight-
ing the corrupted data less in the weighted least squares
procedure. The other effect on the determination of the
constants is that the orbit of the spacecraft is perturbed
during the jetting period, and, as a result, when the gas
is depleted, the orbit is not known as well as if the gas
jetting had not occurred. This situation can also be
handled by properly representing the statistics of the
orbital parameters at the end of the gas jetting. Thus,
orbital errors which result from the jetting are mapped
into the errors in the constants as determined from data
taken before, during, and after the jetting period.

Effects of the jetting on the orbital position after a
period T can le estimated from % FT?*/m, which for a
force F of 100 dynes amounts to 56 m, while the effect on
velocity from FT/m is 0.02 m/sec for the same force.
In this article, the inabilty to compute a perfectly accu-
rate orbit because of an uncertainty in the force model
during gas jetting is ignored, and the only effect of jetting
on the orbit and constants is presumably to decrease the
accuracy of the data during the jetting period.

The numerical results of Subsection 5 show that the
only constant significantly affected by the gas jetting is
the mass of Mars and that an uncertain force greater than
+100 dynes effectively destroys the doppler data taken
during the jetting period. Even at +10 dynes, over 90%
of the potential information in the close encounter data
is lost. The addition of range data during the jetting
period reduces the +10-dyne effect on the mass from a
30 degradation for doppler data only to a 20 degradation
for range and doppler data. In order that the gas jetting
not seriously impair the solution for the mass, it is im-
portant that the random uncertainty on the force be con-
siderably less than +10 dynes and that rauge data be
taken during a significant portion of the jetting period.
Ultimately, the force should be known to =1 dyne. A
calibration for charged particle effects with range and
doppler data is an important part of achieving this ulti-
mate accuracy.

4. Gas Jetting as a Systematic Error Sovrce’

Let gas escape from a spacecraft of mass m at a force
level equal to F in dynes. Then the acceleration a im-
parted to the spacecraft is ¢ = F/m, and if the force is

'The author wishes to thank D. W. Curkendall for assistance in
preparing Subsection 4.
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exerted over a time interval T, the deviation in the posi-
tion of the spacecraft at the end of the interval, com-
pared to a gas-free position, is Ap = 2 aT*. Alternatively,
suppose th+t counted doppler observations are obtained
from whicn the change in topecentric range over some
count time interval T. is deduced. If the error in this
range change is expressed in terms of an error o} in
topocentric range rate, then the range change error over
the count interval T, is given by T.¢;. Further, if the
range error is accumulated over N samples of doppler
data, then the integrated range error over the N samples
is Te (N)“ ¢;, and for an even distribution of samples
over the time interval T, such that T — NT,, the inte-
grated range error is (T7.}"* o.

The approach followed here, in representing the error
from an unknown gas jetting force, is to absorb the sys-
tematic error from the gas jetting into N independent
range rate measurements. All that is required is to equate
the range error % aT- from the gas jetting over the time
interval T to the integrated range error (TT.)" o} over
the same time interval. The resulting range rate error
for N independent samples at intervals T, is

= LF (T\®
i 2?5(1-) @

Let the gas jetting occur over a period of 90 min and set
m = 259 kg and T¢ = 1 min. Then for F given in dynes
the numerical expression of Eq. (1) is

o; = 0.0989 F cm/sec (2)

The accuracy of the doppler data is conservatively rated
at 0.1 cm/sec when sampled at 1-min intervals, and thus
it is apparent from Eq. (2) that if the unknown force F
is greater than +1 dyne, the gas jetting can be considered
a serious source of error. One of the purposes of this
article is to investigate fairly rigorously the implications
of an unknown force of grea sr than 1 dyne, at least as
far as celestial mechanics parameters are concerned.

5. Numerical Results

A version of the JPL orbit determination program
(SPODPA—Mod II, program tape 9493) is used to obtain
variances on various constants and parameters of astro-
nomical interest. The orbital parameters for the space-
craft are represented by geocentric equatorial coordinates
at the epoch, the position of Mars by heliocentric cartesian
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coordinates at the time of the spacecraft’s planetary
encounter, the mass of the Moon by the selenocentric
gravitational constant GM, the Martian gravitational
cunstant by the mass of Mars in solar mass units, and the
astronomical unit A is given in metric units. Actually,
the fundamental unit i light seconds in the determination
of the astronomical units, but error estimates are often
given in metric units. The non-gravitational parameters
¥B. GT and GN are also included in the parameter sta-
tistics to allow for uncertainties caused by solar radiation
pressure and attitude control forces. The uncertainties
for these three parameters are given as a percentage of
the total solar radiation pressure. Their inclusion as
deterministic parameters results in realistic uncertainties
only if the actual Mariner 1969 data are reduced with an
estimator designed to handle random time varying forces.

Al e.ror estimates are ob'ained for two extremes in
assumed station location error. The first assumes no error
and the second =5 m in station location uncertainties.
Note that Hamilton, Grimes, and Trask (SFS 37-44,
Vol. I11, pp. 4-11) have stated that a goal of -1 m uncer-
tainty in station locations is reasonable for Mariner 1969
data reduction. By using -+0 and +5 m, the region of
uncertainty for the parameters should be conservatively
defined.

Other numerical data which go into a computation of
the uncertainties are given in Table 2.

The resulting errors in the 15 parameters of a simu-
lated least squares solution are obtained from the co-
variance matrix computed in SPODPA—Mod II. In
Table 3 the standard deviations are given with no IRS
gas jetting during encounter. Four solutions are repre-
sented to demonstrate the advantage of including range
data. They are:

Solution Type of data
A Range and range-rate data, no station loca-
tion error
B Range-rate data, no station location error
C Range and range-rate data, +5-m station
Jocation error
D Range-rate data, ==5-m station location error

When IRS gas jetting errors are included, by the method
of Subsection 4, there is no appreciable effect on any of the

4




Table 2. Data used in the computation of uncertainties

Geocentric true equaldrial coordinates
(March 18, 1969, 11"52™43:000 ET)

Table 3. Standard deviations in the absence of
IRS gas jetting

x, km
y, km
z, km
x, km/sec
y. km/sec

z,km/sec

—$05058.17
—1140554.5
—1118697.0
—1.6423604
—2.1007967
—2.0376762

Heliocentric osculating elements referred to true ecliptic and equinox

(August 3, 1969, 13"30™48:319 ET)

a, km
.

T

i, deg
Q, deg
w, deg

1119835290
0.22207465
February 26, 1969, 00"03™4 * 069 E1
1.7830771
351.34975
164.38212

Aerocentric osculating elements referred to true ecliptic and equinox
(August 7, 1969, CO"00™53"541 ET)

No station location error —=5.m station location error
Porameter p and f) p only p and b i) only
(A) 8 {s) o)

x, m 24 128 188 1054
y. m 3N 9 517 204¢
Lm 25 77 383 1984
x, u/sec 4 27 14 284
Y 1/sec 3 12 29 188
z, u/sec k| 17 23 132
x;.m 9 42 68 131
yg.m 14 154 33 1658
z,,m 7 59 87 647
GM, km®/ sec? 0.000056 | 0.000169| 0.000399 | 0.000255
M, ppm 0.24 0.25 1.03 0.48
A,m 26 150 65 1312
B, % 0.000231 0.00142 0.00102 0.0179
GT, % 0.000381 | 0.00300 0.00563 0.0394
GN, % 0.000268 | 0.00130 0.00349 0.00518

a, km

i, deg
3, deg
w, deg

—953,32386
6.7704032
August 7, 1967, 00M00™53" 54 ET
15.817714
246.27758
297.13641

Table 4. Standard deviation in ppm for the mass of
Mars at various levels of IRS gas jetting uncertainty

Additional parameters

Astronomical unit, km
Sun—Mars mass ratio
Epoch for position of Mars
Assumed dorpler error

Assumed range error

149598500
3088000
August 7, 1969, 00%00™35 * 000 EY

%1 mm/sec random range rate error
at T-min sample intervul

=£347.4-m random range error at 1-min
sample interval (this corrcsponds fo
one range mecsurament per 10-he
tracking pass with an uncertainty of
367.4/(600) or 15 m)

Uncertainty in No station location error :35-m station location error
RS force, p and ﬁ f') only p ond 5 ‘p only
dyne w ® © o
No force 0.24 0.25 1.03 0.48
*10 0.55 0.74 5.96 1.51
*100 0.57 0.78 6.39 1.72
*500 0.57 0.78 6.39 1.72

Duration of trocking Morch 19, 1969, 0°0 10
(continuous covercge) November 7, 1969, 020
A priori error on parameters
{x, y, 2), km 10
(%, 7, &), km/sec 1.0
"6"3"3”l. 500
GM, km'/sed’ 0.2
M g PPW 16.63
A, km 500
{78, GT, GN), % 1.0
]

15 parameters except the mass of Mars. In Table 4 the
results for the mass are given as standard deviations in
parts per million of the total mass. Again the four solu-
tions (A, B, C, D) are represented.

C. A Distribution Free Method Involving the
Spacing of Independent Sample Points, H. Loss

Consider a continuous probability density function
(PDF), p(x), with p(z) = 0 aud f=, p(x)dx = 1. An inter-
esting problem whose solution is well known is the foilow-
ing. What is the probability that from n independent
samples the proportion of the population between the
minimum and maximum values of the sample data will
exceed 8,0 <8 < 1P
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To solve this problem, we note that if z = (7 p(t)dt
then z is a random variable whose PDF is uniforin on
the interval [0, 1], since 0 < z =<1 for all x and g(z)dz =
p(x)dx, which implies that ¢\z) = 1 from dz/dx = p(x)
wherever p(x) is continuous. From

/ "p(dt = f " p(tydt — f ptdt =z, — z, (1)

we recognize that we need only solve the problem for a
uniform PDF on [0, 1]. Let u and v be the minimum and
maximum values, respectively, fromm n sample values
obtained from a uniform PDF. The joint density function
on (u, v) is simply

p(u, 0) = n(n ~ 1) (v ~ u)** (2)

since there are n choices for u, (n — 1) choices for v, while
the remaining (n — 2) sample values must lie between
v and v with probability (v — u)*2 Hence

Prob(z; — z, = B) = /FB /l n(n — 1) (v — u)*?*dv du
n u+f
=1— g~ 01— p) ©

If we desire that Prob (2, — 2,= 8) = a, then
1 — 8" —ng* (1 — B) = a, which enables one to find
the number of sample values, n, for fixed a, 8. Thus 93
sample data are needed if we desire that the proportion
of the population between the extreme values of the data
exceed 95% (B8 = 0.95) with probability a = 0.95.

Now the above analysis tells us little, if anything, about
the spacing of the sample data between the extreme
values of the data. Let us impose the condition that

i=12:--.n—-1

Prob [ / < a]
" (4)

withy, <y < *** < ¢ < Yia < *** < Yn, the ordered
statistics. Again we need only consider the problem by
dealing with the uniform PDF on [0, 1).

The density function for the ordered statistics is

0=y, Sy = Sya Sl
(%)

P(!Ix, 'lh ) Vn) = ”’ ’
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since there are n choices for y,, (n — 1) choices for y., etc.
We consider the transformation

Y, = 2

Y, = z, + 2,

6
Ys= 2o+ z, + 2, (6)

Yn =20+ 2yt 2.+ + 2oy

whose Jacobian is identically one, so that the joint density
function on z,, z,, -+, 2., is

q(z0, 25, 22, ***, Zpey) = 1! (M

n-1
withz; 20,0=Y z = 1,since z, = y,, 2, = y.— y.,
=0

% = y.'l T Yz, Rpy =y — Yn-1o

Since we are interested in the random variables
23 %, Z3, ***, Zm-1, We integrate out the random variable
z, to obtain

h(z,, Z2, """ 25-1) = fll (l — Ly — 2 — z,._;) (8)
with z; == 0 and E 2; = 1. Thus
i1

Pa)=irob(zi S 2: = @, ", 2oy S @)

=ntﬁ' f---ﬁ'(l—z,—z,---—z,-l)

U(’l —~ 22y % “zn—l)dzl oo dzig,
)

with U(¢) the unit step function, U(¢) = 0 for ¢ < 0,
Ule) = 1tor ¢ = 0.

Let ka + y = 1 with 0 <y < a so that k is the largest
integer for which ka=1. Successive integrations of

Eq. (9) yield
P@=x -1 (")a-mr a0

If, for example, n =4, a =%, we have k=3 and
P (%) = %,

[EROR



The author has been unable to find a closed form for
P.la). However, a computer should enable one to evalu-
ate P,(a) for various values of « and n.

D. Techniques for Studying Dispersions of
Nonlinear Systems, S. R. McReynolds

Let X be a continuous ensemble of vector objects
{x*} with an initial known density function p.(x). Suppose
that each object satisfies a set of nonlinear differential
ezjuations

I = f(xt) (i=1n) (1)

Tiien an important engineering question is to find the
density function P(x, t) of x at a future time ¢. In general,
this task is impossible from an analytic standpoint and
laborious from a computational standpoint. In this article
we concern ourselves with techniques that may be used
to determine quantitative characteristics of P(x, t).

1. The Continvity Equation

Elementary consideration, such as that employed in
fluid mechanics, leads us at once to a partial differential
equation for P(x, t):

oP
=t

i ax.

(Pf‘) = (2)

This equation is referred to as the “continuity equa-
tion,” and is a special case of the Fokker-Planck equation.

2. Solution by Characteristics

Eq. (2) is a quasi-linear, first-order partial differsntial
equation. Together with the initial density functicn Py(x)
the solution may e romputed numerically. To avoid the
problem of computing the partials of P with respect to x
by differencing, one may employ the use of characteristics.

In this case, the characteristics consist of the trajectories
that the objects follow, namely, solutions to the ordinary
set of equations % = f(x, t). Along these characteristics
the derivative of P, which we denote as P, is given by

i=—pz‘:-g% ©)
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The solution to this differential equation is given Ly

P(T) = P,,exp[ j wa dt (4)

The method of solution proceeds as follows. Partition
the set of initial conditions by selecting points in the
region of interest. Map these initial points forward bv
integrating the system eguations until time T. The proba-
bility density of the ensemble at this  ‘nt is given by

Eq. (4), where the integral is along the corresponding
trajectory

Eq. (4) indicates the relationship between stabinty and
diffusion of densities. We note that 3 2f!/ox; = trace

(3f*/2x;) = the sum of real parts of eigem'ralues of (of*/ox).
If the system is stable, the real parts of the eigenvalues
are negative, and hence I 3f'/¢x; < 0. Thus, as indicated

by Eq. (4), the density of objects will increase with the
time along such a traiectory. On the other hand, if the
system is unstable, then = 9f'/6x, > 0, and the density

will decrease with time along the trajectory.

Example:

x=c, pn(x) = [i' lx| <1

0 |x >1
o [rer | <e
Ho 11 = [o x| >er

Some systems have the property that ; ofifox, = 0. For

these systenis the probability densities remain constant
along a trajectory. An important example of this is
Hamiltonian systems. Haiailtunian systems are systems
which satisfy

o= OH . _ —OH . _
P = q‘.q. P (t=1,n)

Obviously ? 3f‘/8:. = z‘ (all/ap‘ oq; — aH/aq‘ ap.)=0.

Conservation of probability density for Hamiltonian
systems is known in classical mechanics as Liouville’s
theorem.
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3. A Functional Approximativn Technique

For many important cases the initial density is Gaussian

Px) = Ke? '™ & 5

S here is a positive semi-definite matrix, and |[x—%,'"} is
the quadratic forrn: (x—%,)" 3(x—x,) (T denotes transposi-
tion). From Eq. (3), it is clear that P(x,t) has the form

P(x,t) = Keho 0 (6)

Now by substituting this into Eq. (2), it is seen that
L(x, t) satisfies the partial differential equation

RN U RN CRN )

cL
ot
where
A
=% o ®)
The initial boundary condition for L(x, t) is given by

Lix.t) = — 5 [[r—%| 9)

1
2

The functional technique we shall suggest here consists
of approximating L(x,t) in the neighborhood of a tra-
jectory (characteristic) with a quadratic form.

Let a nominal trajectory %(¢) be chosen as follows:

;(0) = X
x, = fi(E 1) (10)

Now along this trajectory, differential equations (charac-
teristic equations) may be derived for the partial deriva-
tives of L(x,¢) with respect to x. These are obtained by
taking the partial derivatives of Eq. (7) with respect to x.
The first partial derivative of Eq. (7) with respect to x;,
evaluated at ¥, yields

3 oL 2 oL AL of .. o
e t)+28x 5:{'( 0= ’(x’t))
(11
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Now we note that the operator ¢ /7t ( ) + z — ( i(x, 1)

is the total derivative operator along the characterxstic
x(t). Denoting this operator by ("), Eq. (11) becomes

»\)I,)

z;7rn a(ﬂ (12)

X
Note that from Eq. (9).

e k) . =0 (13)

Xj CT=x(0)

Hence Eqgs. (12) and (13) may be used to compute ¢L/¢x;
along the characteristic x.

To obtain the characteristic equation for *L/cx;Cxx, the
partial derivative of Eq. (11) is taken with respect to x;.
This results in

¢ E
t ox Fx 8x f&
+Z &L i+ SL_of oL _&f
3 cx, ax,- X ox, ¢xx ?x,— cX; €X; oxy
_ _Or
0x; Oxy;
(14)

Using (°) for the characteristic derivative, this becomes

2L #L of | &L of oL _of
8_::,% + Z [ax, 0x; ¢xx + ox; ¢xx OxX;j + ox; ax,.,xk
_ o
0x; 0%
(13)

The initial value of 92L/dx; ox;, which is obtained from
Eq. (9), is

92L -
0x; 0%

(16)

Note that the terms in Eq. (14) depend upon 9L/ox;,
93L/dx,0x;, %, and known functions. Hence, the combined
initial value problem defined by Egs. (10), (12), (18),
(14), and (15) is complete and well defined. This tech-
nique may be used to compute higher derivatives of L.




In each case a complete set of characteristic equations
will be obtained.

The method of approximation consists of employing a
finite number of terms in the expansion of L{x, ¢) around
x(t). If the first two terms are employed, then the approx-
imation to the density function is the Gaussian density
function

(¥}

P(x,t) = Kexp [—1/2 (x — x%)7 ?xL (x — x*)]

This should be a good approximation to the actual solu-
tion in the region if |! x—x* || is small,

Note that for systems that conserve probability deusity
(r = 0), ¢L/¢x = 0. Hence, the approximate mean, or
point of maximum density, lies along the original trajec-
tory. In this case, 3>L/¢x; ox, satisfies the characteristic
equation

&L :“Z[ L, of L gf_]

x, cx;j 7| ¢x, ¢x, Cx; °x; °x; “ox;
(17)
h This is the same result that would be cbhtained by
when linearizing the equations around the nominal trajectory
_ = (=L\7 oL and then applying the continuity equation to solve the
x*=x— [-— - (18) ) .
oxt cx linearized problem exactly.
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